Back to Basics --

Using Hydrology to Develop Solutions

Region 10 Tribal NPS Workshop Olympia, WA October 4, 2006

> Discussion Lead: Bruce Cleland

Office of Wetlands, Oceans & Watersheds -- Watershed Branch 1200 Pennsylvania Avenue NW (4503T) Washington, DC 20460

206-553-2600

Discussion Overview

Points to look for ...

- ✓ Practical approaches
- √ Partnerships
- Targeted Activities
 - √ Contributing areas
 - **V** Delivery mechanisms
 - ∀ Hydrology & duration curves

Watershed Plan Key Elements

Regulatory Considerations

- ★ §319 Guidance
 - ✓ Source Identification
 - √ Management Measures, Load Reductions, Critical Areas
 - √ Needed Technical & Financial Assistance
 - ✓ Information / Education Component
 - √ Schedule
 - ✓ Measurable Milestones
 - ✓ Assessment Framework & Criteria
 - / Effectiveness Monitoring

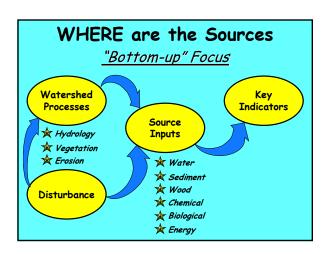
TMDL Development

Regulatory Considerations

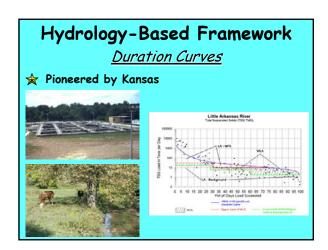
- * Applicable WQ Standards
- ★ Loading Capacity
- ★ Source Assessment
- * Allocations
- * Seasonal Variation
- * Margin of Safety

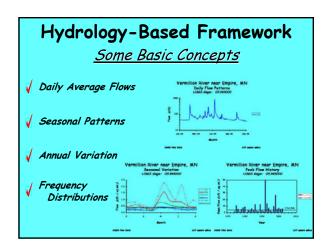
Watershed Plan Development

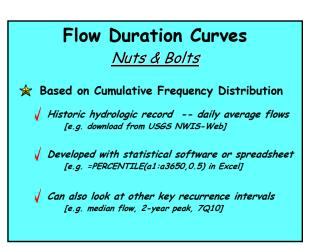
Problem Solving Framework

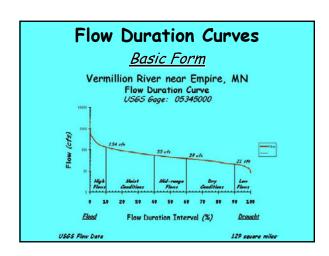

- * Practical approach using key questions ...
 - √ WHY the concern
 - √ <u>WHAT</u> reductions are needed
 - √ <u>WHERE</u> are the sources
 - **V** <u>WHO</u> needs to be involved
 - WHEN will actions occur

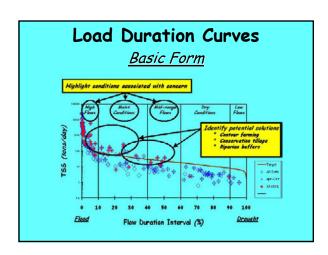
	Y the Concern atifying Objectives
Aquatic Resources Streams Lakes & Reservoirs Estuaries Wetlands	Beneficial Uses * Human Health * Fish & Aquatic Life * Recreation Key Indicators






WHERE are the Sources Hazard / Delivery I was a second of the sources of the s





Water Quality Duration Curves Concept Again, use Cumulative Frequency Distribution ✓ Y-axis becomes water quality parameter value [e.g. load or concentration] ✓ X-axis position matches flow recurrence interval ✓ Curve determined by target concentration and flow associated with recurrence interval

Duration Curves Basics Method offers a number of advantages √ Provides context for looking at WQ data √ Considers full range of flows (not just a design point)

√ Offers framework to target options

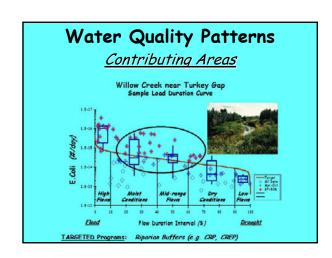
√ Easier to explain -- simple display

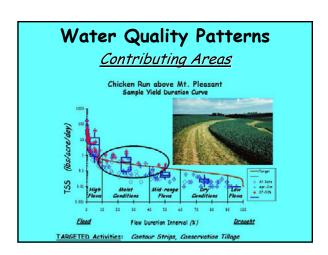
Duration Curves

<u>Advantages</u>

√ Context to <u>interpret</u> monitoring data

(modeling data as well)

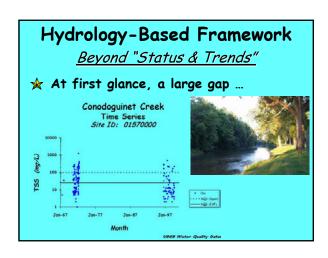

√ Help <u>guide</u> implementation

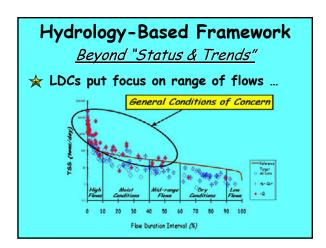

- Targeted <u>Participants</u>
- Targeted <u>Programs</u>
- Targeted Activities
- Targeted <u>Areas</u>

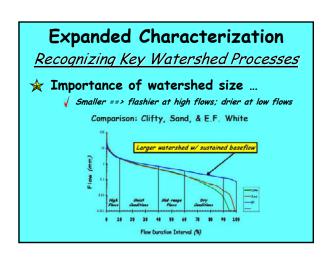
Water Quality Patterns Watershed Condition -- Hydrologic Pipe Creek below Elfton Sample Load Duration Curve Pipe Creek

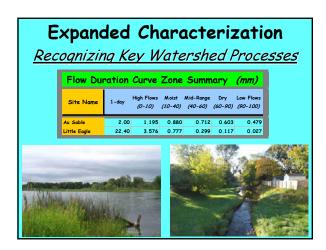
Hydrology-Based Framework

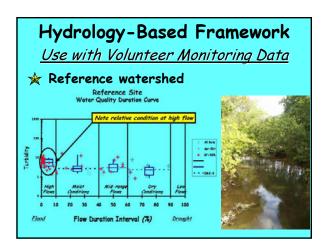
Duration Curves

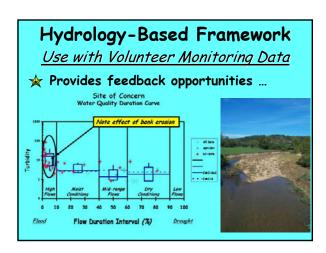

- * Support watershed planning through ...
 - **✓** Enhanced description of water quality concerns
 - ✓ Improve basic understanding of key processes
- Focus on solution development

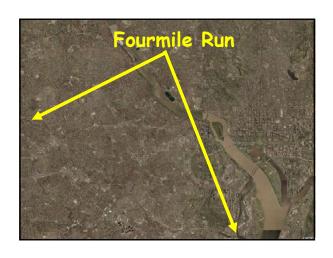

Hydrology - Based Framework Expanded Characterization Group by Hydrologic Condition Identify - Sterm flows - Season Low - Season - S

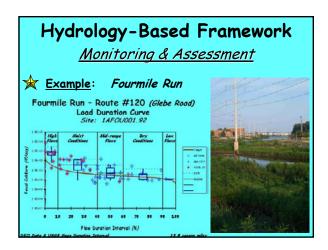

Hydrology-Based Framework

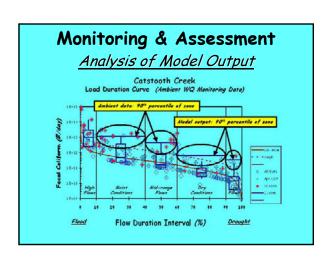

Enhanced Assessment

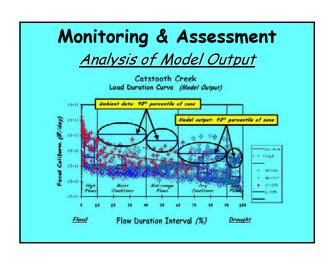

- * Other potential opportunities ...
- ✓ Provide view beyond "Status & Trends"
- V Expand watershed characterization
- ✓ Use with volunteer monitoring efforts
- ↓ Linkage to other analytical methods
 (e.g. models, Bacteria Source Tracking)

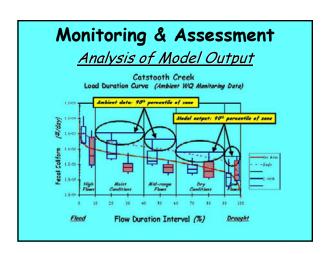


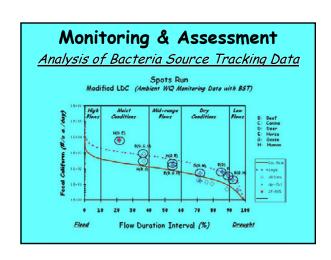


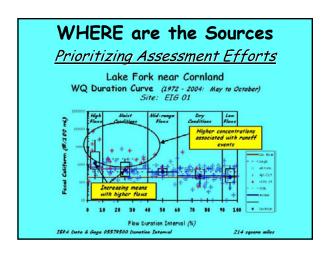












Problem Solving Framework Highlight "Lessons Learned" Convert WQ Data to INFORMATION ✓ Prioritizing Areas of Concern ✓ Connecting the Pieces ✓ Implementation Focus

FX4	MPLE	Duration Curve Zone					
	Contributing Source Area	High	Moist	Mid-Range	Dry	Low	
	Point source				м	Н	
	On-site wastewater systems	M	M-H	н	Н	Н	
	Riparian areas		Н	н	М		
	Stormwater: Impervious		Н	н	Н		
	CSO's	Н	Н	н			
	Stormwater: Upland	Н	Н	M			
	Field drainage: Natural condition	Н	M				
	Field drainage: Tile system	Н	Н	M-H	L-M		
	Bank erosion	Н	M				

WHO Needs to be Involved

Connecting the Pieces

- Focus: Source Areas & Delivery Mechanisms
- * Example: Agricultural Erosion Control
 - Agricultural Fields (e.g. residue management, crop cover)
 - Channel Erosion (e.g. channel stabilization, bank protection)

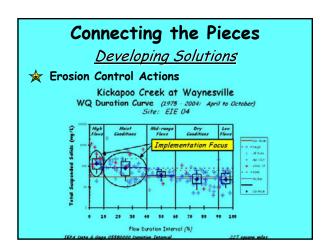
Connecting the Pieces

Agricultural Fields

- * Targeted Activities
 - Residue Management
 - V Crop Rotation & Cover
 - Critical Area Planting
- **Calculation**
 - √ Contributing Area
 - √ Delivery Ratio

Connecting the Pieces

Channel Erosion


- ** Targeted Activities
 - **V** Bank Protection
 - Channel Stabilization
 - ✓ Critical Area Planting


- **V** Channel Dimensions
- ✓ Lateral Recession Rate

Connecting the Pieces <u>Developing Solutions</u>									
EXAMPLE	ai man	Management Practices Duration Curve Zone							
Source Area	<u>High</u>	Moist	Mid-Range	Dry	Low				
Point source controls	L	L	M	н	н				
Septic system inspection	M	M-H	н	Н	н				
CSO repair / abatement	Н	н	н						
SSO repair / abatement			M	Н	н				
Riparian buffers		н	Н	Н					
Pasture management	Н	Н	M						
Pet waste education & ordinance	s	M	Н	Н					
Hobby farm livestock education & ordinances		н	н	м					
	Potential for effective load reductions under given hydrologic condition								

